LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS
 FIRST SEMESTER - NOVEMBER 2007
 MT 1804 - LINEAR ALGEBRA

AB 19

Date : 25/10/2007
Time : 1:00-4:00
Dept. No.

Max. : 100 Marks

Answer ALL Questions.
I. a) i) Let T be the linear operator on R^{3} which is represented in the standard ordered basis by the matrix $\left(\begin{array}{lll}-9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7\end{array}\right)$. Prove that T is diagonalizable by exhibiting a basis of R^{3}, each vector of which is a characteristic vector of T .

Or
ii) Let T be a linear operator on a finite dimensional vector space V . Let $c_{1}, c_{2} \ldots c_{k}$ be the distinct characteristic values of T and let W_{i} be the null space of ($\mathrm{T}-c_{i} \mathrm{I}$). If the characteristic polynomial for T is $\mathrm{f}=\left(x-c_{1}\right)^{d_{1}}\left(x-c_{2}\right)^{d_{2}} \ldots\left(x-c_{k}\right)^{d_{k}}$, $\operatorname{dim} W_{i}=\mathrm{d}_{i}, \mathrm{i}=1,2 \ldots \mathrm{k}$ then prove that $\operatorname{dim} \mathrm{V}=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}+\ldots+\operatorname{dim} W_{k}(5)$
b) i) Let T be a linear operator on a finite dimensional vector space V. Prove that the minimal polynomial for T divides the characteristic polynomial for T .

Or
ii) Let V be a finite dimensional vector space over F and T be a linear operator on V then prove that T is diagonalizable if and only if the minimal polynomial for T has the form $\mathrm{p}=\left(x-c_{1}\right)\left(x-c_{2}\right) \ldots\left(x-c_{k}\right)$ where $c_{1}, c_{2} \ldots c_{k}$ are distinct elements of F .
II. a) i) Define independent subspaces of a vector space V.
ii) Let V be a finite dimensional vector space. Let $W_{1}, W_{2}, \ldots W_{k}$ be independent . subspaces of V and let $W=W_{1}+W_{2}+\ldots W_{k}$. Then prove that for each $\mathrm{j}, 2 \leq j \leq k$,

$$
\begin{equation*}
W_{j} \cap\left(W_{1}+W_{2}+\ldots+W_{j-1}\right)=\{0\} \tag{2+3}
\end{equation*}
$$

Or
iii) Let T be a linear operator on a finite dimensional vector space V and let $E_{1}, E_{2}, \ldots E_{k}$ are linear operators on V such that 1) each E_{i} is a projection 2) $E_{i} E_{j}=0 \quad$ if $\mathrm{i} \neq \mathrm{j} 3$) $I=E_{1}+E_{2}+\ldots E_{k}$ and let W_{i} is the range of E_{i}. If each W_{i} is invariant under T then prove that $\mathrm{T} E_{i}=E_{i} \mathrm{~T}, \mathrm{i}=1,2 . . \mathrm{k}$
b) i) State and prove primary decomposition theorem.

Or

ii) Let α be any non-zero vector in V and p_{α} be the T -annihilator of α. Then prove that if $\operatorname{deg} \mathrm{p}_{\alpha}=\mathrm{k}$ and if U is the linear operator on $\mathrm{Z}(\alpha ; \mathrm{T})$ induced by T , then $\mathrm{k}=\operatorname{dim} \mathrm{Z}(\alpha ; \mathrm{T})$ and the minimal polynomial for U is p_{α}.
III. a) i) If T is a linear operator on a finite dimensional vector space V , then prove that every T-admissible subspace has a complementary subspace which is also invariant under T.

Or
ii) Let $\mathrm{A}=\left(\begin{array}{ccc}2 & 0 & 0 \\ \mathrm{a} & 2 & 0 \\ \mathrm{~b} & \mathrm{c} & -1\end{array}\right)$ be the complex 3X3 matrix. Prove that A is similar to diagonal matrix if and only if $\mathrm{a}=0$.
b) i) State and prove Generalized Cayley-Hamilton theorem.
ii) Let T be a linear operator on a finite dimensional vector space V and let W_{0} be a proper T-admissible subspace of V. Then prove that there exist non-zero vectors $\alpha_{1}, \alpha_{2} \ldots \alpha_{r}$ in V with respective T -annihilators $p_{1}, p_{2}, \ldots p_{r}$ such that $\mathrm{V}=W_{0} \oplus Z\left(\alpha_{1} ; T\right) \oplus Z\left(\alpha_{2} ; T\right) \ldots \oplus Z\left(\alpha_{r} ; T\right)$ and p_{k} divides $p_{k-1}, \mathrm{k}=2,3 \ldots \mathrm{r}$. (15)
IV. a) i) Let V be a finite dimensional inner product space and f a form on V . Then prove that there is a unique operator T on V such that $\mathrm{f}(\alpha, \beta)=(T \alpha / \beta)$ for all α, β in V where (α / β) is the inner product defined on V .

Or
ii) Let V be a complex vector space and f a form on V . Then prove that f is hermitian if and only if $\mathrm{f}(\alpha, \alpha)$ is real for every α.
b) i) Let $\mathrm{A}=\left(\begin{array}{rr}1 & \mathrm{i} \\ -\mathrm{i} & 2\end{array}\right)$ and let g be the form defined by $\mathrm{g}(\mathrm{X}, \mathrm{Y})=Y^{*} A X$. Is g an inner product?
ii) State and prove Principle Axis theorem.

Or
iii) Let f be a form on a real or complex vector space V and $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right\}$ a basis for the finite dimensional subspace W of V . Let M be the rxr matrix with entries $M_{j k}=f\left(\alpha_{k}, \alpha_{j}\right)$ and W^{\prime} the set of all vectors β in V such that $\mathrm{f}(\alpha, \beta)=0$ for all $\alpha \in \mathrm{W}$. Then prove that W^{\prime} is a subspace of V and $W \cap W^{\prime}=\{0\}$ if and only if M is invertible and when this is the case $\mathrm{V}=\mathrm{W}+\mathrm{W}^{\prime}$.
V. a) i) Let V be a vector space over the field F . Define a bilinear form f on V and prove that the function defined by $\mathrm{f}(\alpha, \beta)=\mathrm{L}_{1}(\alpha) \mathrm{L}_{2}(\alpha)$ is bilinear.

Or

ii) State and prove polarization identity for symmetric bilinear form f.
b) i) Let V be a finite dimensional vector space over the field of complex numbers.

Let f be a symmetric bilinear form on V which has rank r . Then prove that there
is an ordered basis $\mathrm{B}=\left\{\beta_{1}, \beta_{2}, \ldots \beta_{n}\right\}$ for V such that the matrix of f in the
ordered basis B is diagonal and $\mathrm{f}\left(\beta_{i}, \beta_{j}\right)=\left\{\begin{array}{ll}1, & \mathrm{j}=1,2, . . \mathrm{r} \\ 0, & \mathrm{j}>\mathrm{r}\end{array}\right\}$
Or
ii) If f is a non-zero skew-symmetric bilinear form on a finite dimensional vector space V then prove that there exist a finite sequence of pairs of vectors, $\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{2}, \beta_{2}\right), \ldots\left(\alpha_{k}, \beta_{k}\right)$ with the following properties:

1) $\mathrm{f}\left(\alpha_{j}, \beta_{j}\right)=1, \mathrm{j}=1,2, \ldots, \mathrm{k}$.
2) $\mathrm{f}\left(\alpha_{i}, \alpha_{j}\right)=\mathrm{f}\left(\beta_{i}, \beta_{j}\right)=\mathrm{f}\left(\alpha_{i}, \beta_{j}\right)=0, \quad \mathrm{i} \neq \mathrm{j}$.
3) If W_{j} is the two dimensional subspace spanned by α_{j} and β_{j}, then
$\mathrm{V}=W_{1} \oplus W_{2} \oplus \ldots W_{k} \oplus W_{0}$ where W_{0} is orthogonal to all α_{j} and β_{j} and the restriction of f to W_{0} is the zero form.
